PCOS TUTORIALS

A Post Graduate Certificate Course in PCOS Management

Module 5
PCOS and Pregnancy

Brought to you by The PCOS Society (India)
Course Directors

Dr. Duru Shah
Founder President
The PCOS Society, India

Dr. Madhuri Patil
Chair, Scientific Committee
The PCOS Society, India

Course Faculty for Module 5

Dr. Uday Thanawala
Honorary Treasurer
The PCOS Society, India
Module V

PCOS and Pregnancy
Table of Contents

1. Module Overview 3
2. Learning Objectives 3
3. Pre-test 4
4. Introduction 6
5. Prevalence of PCOS Induced Complications in Pregnancy 8
6. Pathophysiology of Pregnancy Outcomes in PCOS 10
7. Early and Recurrent Pregnancy Loss 13
8. Gestational Diabetes 18
9. Hypertensive Disorders of Pregnancy 26
10. Preterm Delivery 32
11. Impact on Foetus: Foetal Growth Restriction and Foetal Origin of Adult Disease 35
12. Recommendations to Improve Pregnancy Outcomes 37
13. Conclusion 38
14. Key Points 39
15. Suggested Readings 39
Module Overview

• Women with polycystic ovary syndrome (PCOS) have difficulty conceiving and we have discussed in details infertility associated with PCOS in module 4. In this module we shall discuss about the challenges faced by women with PCOS that conceive.

• These women face higher risk of early and recurrent pregnancy loss (RPL).

• They also have two to three fold higher risk of complications such as gestational diabetes (GDM), hypertension (HTN) in pregnancy and preeclampsia.

• The risk of employing caesarean section for delivery also tends to be higher among women with PCOS for multiple reasons including infertility associated multifetal gestation.

• Further preterm labour may lead to preterm babies who may face the complications of prematurity and may have an extended stay in neonatal intensive care unit (NICU).

• This module will enable the understanding of pathophysiology of these complications during pregnancy; elaborate on investigative work up for diagnosis and prognosis; and discuss the management briefly to assist in successful clinical outcomes following pregnancy among women with PCOS.

Learning Objectives

At the conclusion of this module, the participant will be able to understand:

• Epidemiology of complications in pregnancy that are frequently seen when women with PCOS conceive

• Pathophysiology of complications in pregnancy among women with PCOS

• Diagnosis of complications in pregnancy among PCOS women

• Management of these complications

• How to improve pregnancy outcomes in such cases
PCOS and Pregnancy

PRE-TEST

State whether the following statements are True or False.

1. Women with PCOS can never get pregnant.
 True
 False

2. Women with PCOS have complications in pregnancy only when it is a multifetal gestation.
 True
 False

3. When women with PCOS conceive they are at higher risk of pregnancy complications.
 True
 False

4. Early and recurrent pregnancy loss occurs more often in women with PCOS as compared to normal women.
 True
 False

5. Eclampsia is the only complication with higher frequency in pregnant women with PCOS.
 True
 False

6. Higher number of miscarriages occur in obese women with PCOS.
 True
 False

7. Metformin has shown to be effective in an insulin-resistant PCOS woman with recurrent miscarriages.
 True
 False
8. All women with GDM need to be started on insulin.
 True
 False

9. Patients if diagnosed with hypertensive disorders of pregnancy must be admitted to hospital.
 True
 False

10. PCOS may contribute to foetal origin of adult diseases.
 True
 False

PCOS: Introduction

- PCOS is a heterogeneous and complex disorder that has both adverse reproductive and metabolic implications for affected women.
- This endocrinological disorder is characterized by a reduction in all reproductive performances, including not only chronic anovulatory infertility but also an increased risk of abortion and complicated pregnancy.
- PCOS is a common endocrine disorder during reproductive life, seen in nearly 15% of all women.
- Frequently women with PCOS present with anovulatory infertility and usually undergo ovulation induction with reported cumulative live-birth rates close to 80%.
Several meta-analyses and retrospective studies, demonstrated increased risk of Pregnancy induced hypertension (PIH) and preeclampsia, GDM and preterm birth.

Currently, the pathophysiology of pregnancy complications associated with PCOS is not completely understood. However, it is believed to be directly related to features associated with PCOS itself, such as hyperandrogenism, obesity, insulin resistance, infertility treatment, and placental dysfunction. \(^1\,^2\)

• However, multiple pregnancies and related perinatal morbidity represent an inherent complication of such interventions.
• Even when an ongoing singleton pregnancy is achieved, there is evidence of higher risk of pregnancy complications in women with PCOS.

Main follicle fluid factors implicated in polycystic ovary folliculogenesis are members of the growth factor families
• Cytokines
• Inhibins

Their balance be altered

Negative impact on the fertilization, embryonic development and outcome of pregnancy in PCOS patients

PCOS and Pregnancy Outcome: Pathogenesis

- Obesity
- Hyperandrogenaemia
- Hyperinsulinism

Complications

- Spontaneous abortions
- GDM
- Impaired glucose tolerance
- Pregnancy induced hypertension
- Preeclampsia
- Preterm birth

- Foetal growth restriction
- Foetal origin of adult disease
- Increase caesarean section
- Increased operative delivery
- Neonatal intensive care unit
Prevalence of PCOS Induced Complications in Pregnancy

<table>
<thead>
<tr>
<th>Pregnancy complication</th>
<th>Prevalence in women with PCOS</th>
<th>Odds ratio</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDM and associated foetal macrosomia</td>
<td>40–50%</td>
<td>2.94</td>
<td>1.70–5.08</td>
</tr>
<tr>
<td>PIH and preeclampsia</td>
<td>5%</td>
<td>3.67</td>
<td>1.98–6.81</td>
</tr>
<tr>
<td>SGA</td>
<td>10–15%</td>
<td>3.47</td>
<td>1.95–6.17</td>
</tr>
<tr>
<td>Preterm birth</td>
<td>1.75</td>
<td>1.16–2.62</td>
<td></td>
</tr>
<tr>
<td>Admission to NICU</td>
<td>2.31</td>
<td>1.25–4.26</td>
<td></td>
</tr>
<tr>
<td>Perinatal mortality</td>
<td>3.07</td>
<td>1.03–9.21</td>
<td></td>
</tr>
</tbody>
</table>

• When pregnancy occurs in women with PCOS, there is a higher incidence of GDM (40% to 50%) and associated fetal macrosomia, gestational hypertensive disorders (such as preeclampsia and PIH) [5%], and birth of small-for-gestational-age (SGA) babies (10% to 15%).\(^1,2\)

• The meta analysis on pregnancy complications in women with PCOS demonstrated a statistically significant higher risk of developing GDM, PIH, preeclampsia and preterm birth (PTB) as shown in the table above.\(^1,2\)

• Their babies had a statistically significant higher risk of admission to a NICU and a higher perinatal mortality unrelated to multiple births.\(^1,2\)

References:

The risk of complications continues to be high even in singleton pregnancies among women with PCOS.

Pregnancy complications in the analysis tabulated above included GDM diagnosed via the 75 g, 2 hr oral glucose tolerance test (OGTT), hypertensive disorders of pregnancy (HDP), including gestational hypertension or preeclampsia as per the International Society for the Study of Hypertension in pregnancy guidelines, antepartum haemorrhage (APH) leading to hospital admission, cerclage placement, preterm premature rupture of the membranes (PPROM), intrauterine fetal demise, and elective or unplanned caesarean section.

Birth outcome variables included gestational age at delivery, birth weight (g), PTB; <32 and <37 weeks, low birth weight (LBW) [<1,500 and <2,500 g], macrosomia (>4,000 g), small for gestational age (SGA) and large for gestational age (LGA) [<10th and >90th percentiles, respectively], according to Fenton 2013 growth curves, congenital malformations, and perinatal mortality (≤7 days).

It must be noted that there is threefold to fourfold increased risk for HDP (which includes PIH and preeclampsia) and GDM. Further a twofold increased risk of preterm delivery, PPROM is observed in women with PCOS.

Prevalence of Singleton Pregnancy Complications in Women with PCOS

<table>
<thead>
<tr>
<th>Complication</th>
<th>Unadjusted OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>3.52</td>
<td>1.56–8.0</td>
</tr>
<tr>
<td>HDP</td>
<td>3.53</td>
<td>1.70–7.35</td>
</tr>
<tr>
<td>APH</td>
<td>1.09</td>
<td>0.40–2.99</td>
</tr>
<tr>
<td>Cerclage</td>
<td>0.91</td>
<td>0.19–4.23</td>
</tr>
<tr>
<td>PPROM</td>
<td>2.35</td>
<td>0.69–8.03</td>
</tr>
<tr>
<td>Cesarean section</td>
<td>0.99</td>
<td>0.58–1.71</td>
</tr>
<tr>
<td>SGA <10th percentile</td>
<td>0.99</td>
<td>0.36–2.70</td>
</tr>
<tr>
<td>LGA >90th percentile</td>
<td>2.78</td>
<td>1.27–6.10</td>
</tr>
<tr>
<td>PTB <32 wk</td>
<td>1.74</td>
<td>0.45–6.72</td>
</tr>
<tr>
<td>PTB <37 wk</td>
<td>2.32</td>
<td>1.11–4.86</td>
</tr>
<tr>
<td>LBW <1,500 g</td>
<td>1.54</td>
<td>0.41–5.84</td>
</tr>
<tr>
<td>LBW <2,500 g</td>
<td>1.34</td>
<td>0.58–3.07</td>
</tr>
<tr>
<td>Macrosomia >4,000 g</td>
<td>1.01</td>
<td>0.40–2.55</td>
</tr>
<tr>
<td>Malformations</td>
<td>0.91</td>
<td>0.19–4.23</td>
</tr>
<tr>
<td>Perinatal mortality</td>
<td>0.91</td>
<td>0.11–7.90</td>
</tr>
</tbody>
</table>

DM: Diabetes; HDP: Hypertensive disorders of pregnancy; APH: Antepartum haemorrhag; PPROM: Preterm premature rupture of the membranes; SGA: Small-for-gestational-age; LGA: Large for gestational age; PTB: Preterm birth; LBW: Low birth weight
• The relative risk (RR) for adverse obstetric or neonatal outcomes was increased (1.7) in patients with PCOS and varied according to the PCOS phenotype (1.93 full-blown PCOS; 2.23 non polycystic ovaries; 0.54 non hyperandrogenic; 0.48 ovulatory phenotypes). \(^3\),\(^4\)

References:

Pathophysiology of Pregnancy Outcomes in PCOS

- The proposed pathophysiology of pregnancy complications is obesity, altered glucose metabolism, and disturbances in uterine blood flow.
- Obesity in its own right is associated with several adverse pregnancy outcomes, including spontaneous miscarriage, preeclampsia, GDM, congenital anomalies (e.g., cardiac and spina bifida), foetal macrosomia, caesarean delivery, and wound complications after caesarean section.
- Insulin resistance partially mediates the effects of obesity on adverse pregnancy outcome.\(^1\),\(^2\)
- The spectrum of pregnancy complications seems to have a common denominator: defective trophoblast invasion and placentation.
• In a comparative study between PCOS women and the control group, placental weight, thickness, density and volume were significantly ($P<0.05$) lower in PCOS than in the control group. Further, there was considerable difference noted between the groups in foetal–placental weight ratio.3

• Alterations in the impedance to blood flow through the uterine artery may be sustained during the first and middle trimester of pregnancy.1,2

Pathophysiology of Pregnancy Complications in Women with PCOS

• Poor oocyte quality due to hyperandrogenaemia, hyperinsulenaemia and aberrant ovarian growth factors–growth differentiation factor (GDF 9) deficit, increased tumor necrosis factor (TNF α), increased expression of endothelial growth factor receptors (EGFR)

• Poor embryo quality due to poor quality oocytes

• Increased oxidative stress and increased follicular fluid homocysteine levels

• Epigenetic influence: increased incidence of CAG repeats and chromosome X inactivation, altered fetal luteinizing hormone (LH) secretion, reproductive and metabolic consequences on the foetus

FSHR: Follicle stimulating hormone receptor; AMH: Anti-müllerian hormone; VIP: Vasoactive intestinal peptide; LIF: Leukemia inhibitory factor; IGF: Insulin-like growth factor; BMP-15: Bone morphogenetic protein-15; GDF-9: Growth differentiation factor 9; TGF-\(\beta\): Transforming growth factor-β; FGF2: Fibroblast growth factor 2; EGF: Epidermal growth factor; CTGF: Connective tissue growth factor; KL: Kit ligand
• Gene expression of GDF9, an oocyte-derived growth factor affecting theca cell layer formation, is reduced in ovaries of anovulatory PCOS women, linking dysregulated oocyte GDF9 gene expression with altered folliculogenesis.

• Intrafollicular cytokines and growth factors also affect oocyte development.

• Improved oocyte quality accompanies increased levels of granulocyte colony-stimulating factor; interleukins IL-12, IL-6, IL-8, and IL-18; brain-derived neurotropic factor; bone morphogenic protein 2; and amphiregulin, as well as decreased levels of IL-1 and IL-12 and vascular endothelial growth factor isoform.

• It is unclear, however, which cytokines and growth factors in follicular fluid are relevant for determining oocyte quality in PCOS.

• The androgen receptor is located on the X chromosome, and it contains a polymorphic CAG repeat region in exon 1. The length of this CAG repeat region shows an inverse relationship with androgen sensitivity.

• Multiple genome-wide association studies (GWAS) have replaced single gene aetiology of PCOS. GWAS has consistently demonstrated that PCOS is a complex genetic disorder with multiple alleles.

• However there is a lack of functional genomics studies to explain the possible pathophysiological significance of identified genetic variants.

• The gonadotropin and gonadotropin receptor variants are nevertheless have a constant association with phenotypic abnormalities in PCOS.34

References:

Early and Recurrent Pregnancy Loss in PCOS

- Higher incidence of adverse pregnancy and birth outcomes has been reported among the women with PCOS.
- Women with PCOS have several other risk factors associated with conception, such as obesity, increased age at conception, multifetal gestation use of assisted reproductive techniques and others.
- Recently published retrospective study in *Fertil and Steril*, 2016 investigated whether PCOS was an independent risk factor among singleton conception in women who underwent IVF procedures. The result of the study are shown in the table below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unadjusted OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singleton pregnancies</td>
<td>1.27</td>
<td>0.91–1.77</td>
</tr>
<tr>
<td>Biochemical pregnancy loss</td>
<td>1.45</td>
<td>1.02–2.06</td>
</tr>
<tr>
<td>Early clinical pregnancy loss</td>
<td>0.88</td>
<td>0.53–1.48</td>
</tr>
<tr>
<td>Ectopic pregnancy</td>
<td>1.63</td>
<td>0.53–5.07</td>
</tr>
<tr>
<td>Therapeutic pregnancy termination</td>
<td>10.6</td>
<td>0.96–118.0</td>
</tr>
<tr>
<td>Multiple pregnancies</td>
<td>0.28</td>
<td>0.13–0.60</td>
</tr>
</tbody>
</table>

The study found that after adjusting for differences in maternal age, parity, body mass index (BMI), and time to conception PCOS continued to be an independent risk factor for higher rates of adverse pregnancy outcomes.

Impact of PCOS on Reproductive Outcome

- High incidence of periconceptional damage
- High incidence of miscarriage: 30–50%
- High incidence of negative pregnancy outcome
 - GDM: 20–30%; PIH: 13.3%; Fetal growth restriction: 10–15%

Results in adverse pregnancy outcomes
Several factors are responsible for adverse outcomes of pregnancy in PCOS as shown in the figure below:

Potential Contributors to Pregnancy Loss in PCOS Women

<table>
<thead>
<tr>
<th>Obesity</th>
<th>Placental thrombosis</th>
<th>Endometrial defects</th>
<th>Hyper-androgenaemia</th>
<th>Insulin resistance</th>
<th>Fetal defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Independent risk factor for spontaneous abortions</td>
<td>• Elevated Plasminogen activator inhibitor-1 activity is an independent risk factor for pregnancy loss in women with PCOS</td>
<td>• Deficient secretion of endometrial proteins may contribute to pregnancy loss in PCOS</td>
<td>• Found associated with pregnancy loss</td>
<td>• It is an independent risk factor for pregnancy loss in all women</td>
<td>• Chromosomal abnormalities are not common in PCOS</td>
</tr>
</tbody>
</table>

IGF: Insulin-like growth factor; IGFBP: Insulin-like growth factor binding proteins; LIF: Leukemia inhibitory factor; IL: Interleukin; PAI: Plasminogen activator inhibitor
• Foetal chromosomal abnormalities may not be common in PCOS and, hence, other factors may play a more dominant role in pregnancy loss in this syndrome.³

• Obesity is one such factor. Significant differences in spontaneous abortion rates between obese women (38.1%; BMI=30 kg/m²) and normal weight (13.3%; BMI 20–24.9 kg/m²) or overweight (15.5%; BMI 25–29.9 kg/m²) women, support the concept that obesity is an independent risk factor for spontaneous abortion.⁴

• High plasminogen activator inhibitor (PAI-1) activity can result in placental bed thrombosis as well as uterine vascular insufficiency. Regarding PAI-1 activity in PCOS, Glueck et al. reported that elevated PAI-1 activity is an independent risk factor for miscarriage in women with PCOS.⁵

• A gene defect is not necessary as insulin resistance itself has been shown to increase PAI-1 levels.

• Deficient secretion of endometrial proteins is responsible for 30–50% miscarriages in PCOS. Glycodelin (previously known as PP14) and IGF binding protein-1 (IGFBP-1) are two proteins secreted by the endometrium that appear to play important roles in endometrial receptivity during implantation and early pregnancy.⁶

• Women with PCOS have been shown to have both low serum glycodelin concentrations and serum IGFBP-1 concentrations in pregnancy. Serum glycodelin was 56% lower in women with PCOS during gestational weeks 3–5, 23% lower during weeks 6–8, and similar by weeks 9–11. Serum IGFBP-1 concentrations were 60–70% lower in PCOS during weeks 3–5 and 6–8, and 39% lower during weeks 9–11. This study provided evidence implicating endometrial dysfunction during the perimplantation period as a possible mechanism for early pregnancy loss in PCOS.⁷

• In a double blind, placebo-controlled study of 48 women with PCOS, the insulin-sensitizer metformin significantly increased follicular and luteal phase serum glycodelin and IGFBP-1 concentrations.⁸

• Increased LH was not associated with RPL.⁹

• The plasma concentrations of androgens were significantly higher in women with PCOS, who had recurrent miscarriages compared with normal controls. Likewise, women with recurrent miscarriages who did not have PCOS had significantly higher androgen levels than normal controls, suggesting that an elevated androgen profile by itself is involved with recurrent miscarriages.

• A negative correlation between plasma androgen concentrations and glycodelin concentrations from uterine flushings, suggests that high androgen concentrations may lead to abnormal endometrial development.⁸,¹⁰
Factors Responsible for Pregnancy Loss Unified by Hyperinsulinaemia with Insulin Resistance

- Insulin resistance
- Hyperinsulinaemia

Factors:
- Obesity/Body mass index
- Androgens (↑ovarian production, ↓SHBG)
- ↓Serum and endometrial glycodelin and IGFBP-1 activity
- ↓Uterine vascular activity
- ↑Uterine vascular resistance

PAI: Plasminogen activator inhibitor; IGFBP: Insulin-like growth factor binding proteins; SHGB: Sex hormone binding globulin

Relation between Insulin Levels and Obesity in PCOS

- Insulin levels in PCOS
 - PCOS
 - Obese

Insulin sensitivity is reduced in lean and obese women with PCOS

- Controls
- PCOS

Obesity amplifies insulin resistance in women with PCOS

- Insulin sensitivity
 - Normal
 - PCOS

BMI
• As discussed above obesity, hyperandrogenaemia, endometrial defects, increased PAI activity affect implantation and lead to pregnancy loss. All of these factors as shown above have been associated with insulin resistance in presence of hyperinsulinaemia.

• Decreased uterine vascularity and increased vascular resistance are also seen with insulin resistance.

• Hyperinsulinaemia in PCOS women is associated with hyperhomocysteinaemia, independent of BMI alone.\(^\text{11}\)

• Homocysteine should be considered as a marker of RPL especially in insulin resistant PCOS women.\(^\text{12}\)

• Metformin has shown to be effective in an insulin-resistant PCOS woman with recurrent miscarriages.\(^\text{13}\)

References:

Gestational Diabetes in PCOS

<table>
<thead>
<tr>
<th></th>
<th>Prevalence</th>
<th>Pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women with PCOS</td>
<td>Women without PCOS</td>
<td></td>
</tr>
<tr>
<td>Gestational diabetes</td>
<td>11.2%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
<td>5.1%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

- The prevalence of GDM and type 2 diabetes mellitus (T2DM) was 11.2% and 5.1% in women with PCOS and 3.8% and 0.3% in women without PCOS, respectively (*P* < .001) for both.

- PCOS was associated with increased odds of GDM and T2DM.¹

- In a subgroup analysis, maternal complications were statistically significantly higher in women with hyperandrogenic (defined as a free androgen index >4.5) PCOS compared to those with normoandrogenic PCOS (45% vs. 24%; *P* = .003).

- No statistically significant differences were observed between these groups regarding neonatal complications.²
• After adjusting for age, BMI, HTN, smoking, and demographic factors, the odds of GDM (odds ratio 2.1, 95% CI 1.1–3.9, \(P = .02 \)) and T2DM (odds ratio 8.8, 95% CI 3.9–20.1, \(P < .001 \)) remained increased in women reporting PCOS.\(^1,2\)

Conversion Rates for Glucose Tolerance

• Women with normal glucose tolerance at baseline had a 16% conversion to IGT per year

• Women with baseline IGT had a 6% conversion rate over 3 years, or 2% per year to DM

• 9.3% converted from normal to IGT over 6.2 years

• 7.4% converted from normal to T2DM

• 5.4% converted from IGT to T2DM\(^3\)
• Altered human placental lactogen (hPL), placental growth hormone (GH), corticotropin-releasing hormone (CRH), progesterone and adipokines (TNF alpha) result in insulin resistance and lead to GDM.
• In presence of obesity there is increase in TNF, IL-6 and leptin and decrease in monocyte chemoattractant protein (MCP-1) which further adds to the insulin resistance.
• The increased rates of GDM may relate to placental hormone-mediated exacerbation of pre-existing insulin resistance.
• Higher rates of GDM among the PCOS population have been observed irrespective of BMI.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Relative risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal</td>
<td></td>
</tr>
<tr>
<td>Subsequent development of type 2 diabetes mellitus</td>
<td>7.4</td>
</tr>
<tr>
<td>Gestational hypertension</td>
<td>1.6</td>
</tr>
<tr>
<td>Preeclampsia</td>
<td>1.5</td>
</tr>
<tr>
<td>Cesarean delivery</td>
<td>1.3</td>
</tr>
<tr>
<td>Foetal</td>
<td></td>
</tr>
<tr>
<td>Shoulder dystocia/birth trauma</td>
<td>2.9</td>
</tr>
<tr>
<td>Macrosomia</td>
<td>1.6</td>
</tr>
<tr>
<td>Subsequent adolescent and childhood overweight</td>
<td>1.5</td>
</tr>
<tr>
<td>Birth defects</td>
<td>1.2</td>
</tr>
<tr>
<td>Hyperbilirubinaemia</td>
<td>*</td>
</tr>
<tr>
<td>Hypoglycaemia</td>
<td>*</td>
</tr>
</tbody>
</table>
Screening and Diagnostic Test for Gestational Diabetes

- In India DIPSI (Diabetes in Pregnancy Study Group in India) guidelines is recommended for screening and diagnosis of GDM
- It is conducted in non-fasting state screened during gestational period of 24–28 weeks
- 75 g of glucose is used
- Venous blood samples are collected after 2 hr
- DIPSI diagnostic criteria is a 2 hr value $\geq 140 \text{ mg/dL}$
- This method holds the convenience of being a single step, nonfasting procedure
- DIPSI criteria was found to be comparable to WHO criteria for sensitivity and specificity in diagnosing and screening GDM.

In India modified 75 g glucose test as mentioned in DIPSI guidelines is recommended for screening and diagnosis of GDM:
- The test can be conducted in nonfasting state (irrespective of the time of last meal)
- 75 g of glucose dissolved in 300 mL of water is administered and time noted
- Venous blood samples are collected after 2 hr and subjected to centrifugation and analyzed in a semi automated analyzer.
- DIPSI diagnostic criteria is a 2 hr value $\geq 140 \text{ mg/dL}$
- This method holds the convenience of being a single step, nonfasting procedure
- DIPSI criteria was found to be comparable to WHO criteria for sensitivity and specificity in diagnosing and screening GDM.

GDM has health implications for the mother and foetus during pregnancy and later in life.

These adverse outcomes have been mentioned above.
Management of Gestational Diabetes for Euglycaemia

<table>
<thead>
<tr>
<th>Medical nutrition therapy (MNT)</th>
<th>Pharmacotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Balanced diet</td>
<td>• Insulin or oral anti hyperglycaemic agents may be used for failed MNT</td>
</tr>
<tr>
<td>o 25 kcal/kg of ideal body weight for gestational age among overweight or obese women and</td>
<td>• Metformin and glyburide are considered safe and effective in pregnancy and lactation</td>
</tr>
<tr>
<td>o 30 kcal/kg among normal weight women</td>
<td>• Acarbose has less than 2% absorption in maternal circulation and has been recently added to the oral hypoglycaemic agent (OHA) used in pregnancy</td>
</tr>
<tr>
<td>• Never less than 1,500 kcal for pregnant women</td>
<td>• Initial dose of insulin is 0.3–1.0 U/kg of body weight</td>
</tr>
<tr>
<td>• Total energy: 45%–48% from complex carbohydrates, 20%–21% from proteins, and 30%–32% lipids</td>
<td>• The pharmacotherapeutic dosage is modified to achieve</td>
</tr>
<tr>
<td>• The total energy intake modified according to the progression of pregnancy at 4-week intervals.</td>
<td>o Fasting plasma glucose < 95 mg/dL and</td>
</tr>
<tr>
<td></td>
<td>o 1 hr postprandial glucose < 130 mg/dL or</td>
</tr>
<tr>
<td></td>
<td>o 2 hr postprandial glucose < 120 mg/dL</td>
</tr>
</tbody>
</table>

• For maintaining the blood glucose levels the above plan is followed.

• MNT is the first step which if fails pharmacotherapy with insulin or OHA needs to be considered.

• Traditionally insulin has been the gold standard for treatment of hyperglycaemia during pregnancy, when lifestyle measures are unable to alone maintain the glycaemic control during pregnancy. However, recent evidences support the use of OHA (metformin and glyburide) as safe and acceptable alternatives.

• US Food and Drug Administration (FDA) has not approved any OHA for treatment of diabetes in pregnancy.

• However UK National Institute for Health and Care Excellence (NICE) guidelines consider metformin and glyburide safe in pregnancy and lactation.

• The Endocrine society provides guidelines regarding use of OHAs (metformin and glyburide) in pregnancy.

Recommendations on Use of Oral Anti Hyperglycaemic Agents in Mild Gestational Diabetes

For glycaemic control in women with GDM who fail 1 week trial of MNT and exercises

Metformin
- Used alone or as an adjunct to insulin
- During preconception period and during pregnancy

Myoinositol
- Supplementation during first trimester, in obese pregnant women
- Reduces the incidence in GDM through reduction in insulin resistance

Glibenclamide (Glyburide)
- Can be used as oral anti hyperglycaemic agent
- Higher incidence of hypoglycaemia

Metformin
- NICE guidelines recommend that metformin may be used alone or as an adjunct to insulin in preconception period and during pregnancy

Myoinositol
- Supplementation with myoinositol from the first trimester, in obese pregnant women appeared to reduce the incidence in GDM through a reduction in insulin resistance

Glibenclamide (Glyburide)
- It can also be used as oral anti hyperglycaemic agent however due to possible hypoglycaemia; it is not a preferred choice

Oral Anti Hyperglycaemic Agents

<table>
<thead>
<tr>
<th></th>
<th>Glibenclamide</th>
<th>Metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of hyperglycaemia</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Predominantly fasting hyperglycaemia</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Predominantly postprandial hyperglycaemia</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Risk of hypoglycaemia</td>
<td>High risk</td>
<td>Safe</td>
</tr>
<tr>
<td>Gastro-intestinal intolerability</td>
<td>-</td>
<td>Possible</td>
</tr>
<tr>
<td>Effect of insulin resistance</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Effect on weight</td>
<td>Weight gain</td>
<td>Weight neutral</td>
</tr>
<tr>
<td>Frequency of administration</td>
<td>Once/twice daily</td>
<td>Once/thrice daily (sustained resistance)</td>
</tr>
</tbody>
</table>
Endocrine society suggests glibenclamide is the first option for management of GDM. However, this support may be controversial.

Metformin crosses the placenta but has evidence of favourable effects on children when compared with insulin group, however no such data is available for glibenclamide.

There are no human studies available on use of acarbose in GDM, hence is not recommended yet.

Insulin is not transferred through placenta or secreted into breast milk and therefore, remains the optimal anti-diabetic treatment during pregnancy and lactation.11,12,13

Algorithm for Management of Gestational Diabetese

Presentation of antenatal care

Risk of pre-existing diabetes mellitus?

No

Yes

Screen for diabetes using fasting glucose level, A1C level, or two-hour oral glucose tolerance test

Normal

Abnormal

Screen at 24 to 28 weeks for gestational diabetes

Normal

Abnormal

Manage as pre-existing diabetes

Begin blood glucose self-monitoring

Lifestyle modifications

Close follow-up

Glucose level: Fasting ≤ 95 mg per dL (5.3 mmol per L), One-hour postprandial ≤ 140 mg per dL (7.8 mmol per L), or Two-hour postprandial ≤ 120 mg per dL (6.7 mmol per L)?

No

Consider initiation of oral agent or insulin

Follow up in one to two weeks

Go to A

Yes

Continue monitoring

Glucose controlled?

No

Initiate and/or intensify pharmacotherapy as needed

Continue present management strategy

Yes

Poor glycaemic control despite medication use or another indication for delivery (such as preeclampsia) exists?

No

Plan for delivery at >38 weeks

Induction of labour as clinically indicated

Yes

Estimated foetal weight >4,000 g (8 lb, 13 oz)?

No

Plan for vaginal birth

Counsel for potential risks and benefits of scheduled caesarean delivery

Yes

Monitor glucose level intrapartum and treat as needed

Generally discontinue oral agents and/or insulin after delivery

Screen for abnormal glucose metabolism at six to 12 weeks postpartum at every three years thereafter

No

Yes

A
• The above algorithm guides the management of GDM.

• Screening and continued monitoring are the important pillars for achieving satisfactory medical outcomes in these women.

• The birth plan will be based on presence of other complications of pregnancy, blood glucose control and estimated foetal weight

• Postpartum follow-up helps defer the development of T2DM, which occurs over time in 15 to 50% of women with GDM.

• These patients should be screened at follow up as mentioned above.

References:

Hypertensive Disorder of Pregnancy

Chronic hypertension in pregnancy
- Blood pressure ≥ 140/90 mmHg
- Without proteinuria
- Present since before pregnancy, diagnosed before 20 weeks of gestation

PIH/ Gestational hypertension
- Blood pressure ≥ 140/90 mmHg
- Without proteinuria
- After 20 weeks gestation on two or more occasions (at least 6 hr apart)

Preeclampsia
- Blood pressure ≥ 140/90 mmHg
- In combination with proteinuria > 0.3 g/24 hr
- After 20 weeks gestation

Preeclampsia superimposed on chronic hypertension in pregnancy
- Blood pressure > 140/90 mmHg before 20 weeks of pregnancy
- Proteinuria develops after 20 weeks of pregnancy
- 12 weeks postpartum the proteinuria resolves but hypertension continues

Eclampsia
- Convulsive disorder of pregnancy

- The classification of HDP is mentioned above. ¹
- PIH and preeclampsia are the most common types of hypertensive disorders seen in women with PCOS.
- The prevalence rates of HDP are 3–32%. ²
Findings of prevalence of HDP from a recent study published in the journal *Fertility and Sterility, 2017* issue is given in the table below.

<table>
<thead>
<tr>
<th>Prevalence rates</th>
<th>Women with PCOS</th>
<th>Women without PCOS</th>
<th>P value</th>
<th>Adjusted OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertensive disorders of pregnancy</td>
<td>19.7</td>
<td>6.5 %</td>
<td>0.004</td>
<td>4.25</td>
</tr>
</tbody>
</table>

Common mechanisms involved in preeclampsia:
- Increase in oxidative stress
- Diffuse endothelial dysfunction
- Alterations in inflammatory mediators, and
- Abnormalities in the renin-angiotensin system

Several mechanisms have been implicated as potential causes of preeclampsia and eclampsia.

- Common mechanisms include an increase in oxidative stress, diffuse endothelial dysfunction, alterations in inflammatory mediators, and abnormalities in the renin-angiotensin system.
- Insulin resistance, obesity, hyperandrogenemia, aberrant cytokines TNF alpha and GF, lead to endothelial dysfunction resulting in increased incidence of PIH.³
- Preeclampsia typically disappears after delivery; the placental foetal unit is the most likely cause.
- Increase in tyrosine kinase-1 and reduced levels of placental and vascular endothelial growth factor is found in women prone to developing pre-eclampsia.
- In a normal pregnancy, the placenta produces renin, which leads to increased activity in the renin-angiotensin system. It was recently discovered in preeclamptic patients that an IgG autoantibody interacts with the angiotensin type one (AT₁) receptor leading to its activation.⁴⁵
- Not only does this increase blood pressure, it also mediates coagulation via tissue factor and the fibrinolytic system, induces reactive oxygen species, and influences fms-like tyrosine kinase -1 secretion.⁴⁶
- Prostaglandin aberrations causing a decrease in prostacyclin production. It has been found on studying urinary metabolites in preeclamptic patients. During normal pregnancy, there is an increase in the ratio of endothelial cell-produced prostacyclin and platelet-produced thromboxane, resulting in a vasodilatory state. In preeclampsia this ratio is reversed, promoting vasoconstriction and a proaggregatory state.⁴⁵

Complications of Preeclampsia

<table>
<thead>
<tr>
<th>Maternal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS</td>
</tr>
<tr>
<td>• Seizures, cerebral oedema/ hemorrhage, stroke</td>
</tr>
<tr>
<td>Hepatic</td>
</tr>
<tr>
<td>• Failure/ rupture, subcapsular haemorrhage</td>
</tr>
<tr>
<td>Haemotological</td>
</tr>
<tr>
<td>• DIC, HELLP syndrome</td>
</tr>
<tr>
<td>Lungs</td>
</tr>
<tr>
<td>• Pulmonary oedema</td>
</tr>
<tr>
<td>Renal</td>
</tr>
<tr>
<td>• Oliguria, renal failure, proteinuria: hypoproteinaemia (glomerular injury)</td>
</tr>
</tbody>
</table>

DIC: Disseminated intravascular coagulation; HELLP: Hemolysis elevated liver enzymes and low platelet count occurring in pregnancy
High blood pressure can lead to several complications associated with cerebrovascular, hepatic, haematological and renal compromise which is proportional to the degree of blood pressure elevation.

The complications of preeclampsia for both mother and foetus have been described above.

The most dangerous complication of preeclampsia is eclampsia.

Complications of Preeclampsia

<table>
<thead>
<tr>
<th>Foetal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Preterm delivery</td>
<td></td>
</tr>
<tr>
<td>• Still birth (IUPD)</td>
<td></td>
</tr>
<tr>
<td>• Placental abruption</td>
<td></td>
</tr>
<tr>
<td>• Uteroplacental insufficiency; hypoxic neurological injury; IUGR; oligohydramnios</td>
<td></td>
</tr>
</tbody>
</table>

IUPD: Intrapartum foetal distress; IUGR: Intrauterine growth restriction

Management of Hypertensive Disorders in Pregnancy

The table given below describes the common protocols for anti-hypertensive medications used in patients with severe HTN in pregnancy.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Protocol</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labetalol</td>
<td>20 to 40 mg IV every 10 minutes or 20 mg IV doubled every 10 minutes to max of 80 mg IV until goal blood pressure achieved</td>
<td>Flushing, light headedness, palpitations, scalp tingling</td>
</tr>
<tr>
<td>Hydralazine</td>
<td>5 mg IV every 10 minutes. May increase to 20 mg IV or 10 mg IM followed by 10 mg increases every 15–20 minutes to a maximum of 30 mg IM until goal blood pressure achieved</td>
<td>Headache, flushing, light headedness, nausea, palpitations</td>
</tr>
</tbody>
</table>
Management of hypertensive disorders in pregnancy (contd...)

<table>
<thead>
<tr>
<th>Agent</th>
<th>Protocol</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nifedipine</td>
<td>10 to 20 mg orally every 30 minutes to a maximum dose of 50 mg in one hour of goal blood pressure achieved</td>
<td>Flushing, nausea, vomiting</td>
</tr>
<tr>
<td>Nitroprusaide</td>
<td>0.25 mcg/kg/min IV titrated every 3 to 5 minutes to a maximum dose of 5 mcg/kg/min IV until goal blood pressure achieved</td>
<td>Cyanide production</td>
</tr>
<tr>
<td>Nitroglycerin</td>
<td>5 mcg/min IV titrated every 3 to 5 minutes to a maximum dose of 100 mcg/min IV until goal blood pressure achieved</td>
<td>Headache, trachycardia, methemoglobinemia, increased intracranial pressure</td>
</tr>
</tbody>
</table>

Clinical Pathway for Management of Hypertensive Disorders of Pregnancy

Patient presents with hypertension during the second half of pregnancy (after 20 weeks gestation).

Is proteinuria present to confirm the diagnosis or preeclampsia? (A single dip is not sufficient. A 24-hour urine sample is the most reliable means of documenting proteinuria).

- Yes
 - Is the BP > 140/90 mmHg?
 - Yes
 - Provide magnesium sulfate prophylaxis.
 - Treat hypertension with IV agents.
 - Admit to obstetric unit for further care.
 - No
 - Admit for observation and monitoring to obstetric unit.

- No
 - If asymptomatic, discharge home with close obstetric follow up in 1–2 days.

Is there evidence of new end-organ dysfunction or fetal distress?

- Yes
 - Treat with IV medication and admit to the obstetric unit.
- No
 - Is BP controlled with intervention?
 - Yes
 - Discharge home with close obstetric follow up in 1–2 days.
 - No
 - Treat BP with oral agents and monitor.

These clinical pathway are intended to supplement, rather than substitute for, professional judgement and may be changed depending upon a patients individual needs. Failure to comply with these pathways does not represent a breach of the standard of care.
• The above algorithm describes the clinical pathway for the management of HDP
• Based on the severity of blood pressure elevation patient may be treated on outpatient department basis or admitted in severe cases
• Mild increase in blood pressure may not need pharmacotherapy
• In cases with severe preeclampsia IV labetalol is recommended
• For patients on anti-hypertensive blood pressure goals in pregnancy must be systolic pressure of 130 to 150 mmHg and diastolic pressure of 80 to 100 mmHg
• Prophylactic step are taken to prevent eclampsia as mentioned above
• Close monitoring and timely intervention is the key to prevent serious complications of HDP
• Eclampsia is one of the most dreaded presentation of HDP
• Clinical pathway for management of eclamptic seizures in pregnancy is briefly discussed in the algorithm given below

Clinical Pathway for Treatment of Eclamptic Seizures During Pregnancy

Patient presents with generalized tonic-clonic seizure during the latter half of pregnancy (after 20 weeks gestation).

Support patient’s ABCs and protect from further harm.
Check blood glucose.

Administer one ampule of D₅W IV and monitor response.

Is blood glucose >60 mg/dL?
Yes
Initiate magnesium sulfate therapy (4–6 g IV bolus over 10–20 minutes followed by a drip at 2 g/hr).

No
Continue close monitoring for magnesium toxicity.

Do seizures recur?
Yes
• Consider second line agent such as phenytoin.
• Initiate further workup for other causes of seizures.

No
References:

Preterm Delivery

- Delivery between the 22nd and 37th week of gestation is called preterm.
- Neonatal complications such as prolonged stay in the incubator, necessity for glucose infusions or neonatal jaundice are common association with PTB.
• A higher proportion of PCOS women delivered preterm (12.9%) compared to non PCOS women as seen in the figure above; with the majority of cases due to spontaneous PTB.

• Higher rate of late PTB <37 weeks is seen among PCOS subjects is seen without differences in rates of cerclage, PPROM, as compared to PTB <32 weeks.

• PCOS has been characterized by a similar state of chronic low-grade inflammation, as seen among women with SGA babies.

• Insulin resistance, visceral adiposity, hyperandrogenism, and resultant increased production of specific cytokines and chemokines including TNF-α, IL-6 and IL-1, adhesion molecules implicated in endothelial dysfunction, follistatin and C-reactive protein contribute to higher prevalence of SGA babies among women with PCOS.
• Higher levels of inflammatory cytokines were found in amniotic fluid of women in premature labour.

• Underlying inflammatory mediators associated with PCOS may also contribute to predisposition for PTB.

• Women with infertility which is a common association among PCOS women may also contribute for higher risk for PTB than spontaneously conceived pregnancies.

• Increased antenatal surveillance and facilitated access to higher levels of perinatal and neonatal services should be considered for pregnant women with PCOS.

Reference:

Impact on Foetus: Low Birth Weight Babies and Foetal Origin of Adult Disease

- The spectrum of low birth weight babies (LBW) includes SGA, IUGR, and very low birth weight (VLBW) infants, some who are not only born prematurely but at times also with superimposed IUGR.
- SGA is defined as a birth weight or birth length less than the 10th percentile with respect to gestational age.
- IUGR refers to an infant who does not reach his or her predetermined genetic potential because of some pathologic insult.
- Although IUGR infants may be SGA, all SGA infants are not necessarily IUGR.¹

Small for Gestational Age Foetus in Pregnant Women with PCOS

<table>
<thead>
<tr>
<th>Prevalence%</th>
<th>SGA</th>
<th>LGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>PCOS</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

*P < 0.01 between control and PCOS by χ² test

Prevalence of SGA and LGA infants born to control mothers and mothers with PCOS.

- Pregnant women with PCOS have more than double the risk of giving birth to SGA babies.
- IUGR is caused in 10–15% of pregnant women with PCOS.

- Mothers with PCOS showed a significantly higher prevalence of SGA newborns which cannot be completely attributed to pregnancy complications, and seems to be more related to the PCOS condition of the mother.
- Pregnant women with PCOS are more than twice likely to give birth to SGA children than healthy women.²
• Foetal growth restriction is seen in 10–15% of pregnant women with PCOS.
• SGA may be linked to insulin resistance and insulin-dependent growth dysfunction.
• Therefore, PCOS pregnant women are patients of special obstetrical care.

Pathogenesis of Foetal Origins of Adult Disease (FOAD)
Chronic diseases associated with FOAD
• Obesity
• Type 2 diabetes mellitus
• Cardiovascular disease
• Hypertension
• Kidney disease
• Premature pubarche
• PCOS
• Dyslipidaemia
• Short stature
• Osteoporosis

• Prenatal and postnatal periods are exquisitely sensitive to any factor that can affect growth. These are periods of exponential cell replication, division, and growth.
• Infants born SGA are at increased risk for developing obesity, T2DM, cardiovascular disease (CAD), HTN, kidney disease, premature pubarche, and PCOS, dyslipidaemia, short stature, and osteoporosis.
• Many of these phenotypic changes are known to be secondary to or associated with insulin resistance which is inherent in women with PCOS.
• FOAD is due to altered developmental physiology caused by undernutrition, hypoxia, infection and stress hormones.
• High oxidative status of mother during pregnancy in women with PCOS has a significant influence over the development of the chronic diseases associated with FOAD.
• There is robust evidence that a hyperandrogenic intra-uterine environment ‘programmes’ the genes concerned with ovarian steroidogenesis, insulin metabolism, gonadotrophin secretion and ovarian follicle development resulting in the development of PCOS in adult life.
References:

Recommendations to Improve Outcome of Pregnancy

- Preconceptual assessment of BMI, BP and OGTT
- Screen for GDM at 24–28 weeks of gestation
- Metformin can be used in preconception period and during pregnancy
- Myo-inositol supplementation reduces insulin resistance and its use in the first trimester, for obese pregnant women with PCOS may reduce the chances of development of GDM

- The Endocrine Society, USA Clinical Practice Guidelines recommends pre-conceptual assessment of BMI, BP and OGTT.¹

- Indian guidelines recommend a pregnant woman should be screened for glucose tolerance in the first trimester, if normal then again should be tested for GDM around 24th–28th week using DIPSI criteria and finally around 32nd–34th week.²

- Clinical evidence suggests metformin is safe and effective during periconception period and pregnancy.³

- Study have found that use of myo-inositol in obese women with PCOS can reduce the risk of development of GDM.⁴
CoPPer study is a follow-up study of women diagnosed with PCOS.

Study Design
- 50 consecutive pregnant women
- Preconception standardized evaluation
 - Biometry
 - Endocrinology
 - Metabolic features, including OGTT
 - Ultrasound
- OGTT at 24–26 weeks

References:

Conclusion
- When women with PCOS conceive whether it’s a multifetal gestation or a singleton pregnancy, a higher risk of pregnancy complications is involved.
- Currently, the pathophysiology of pregnancy complications associated with PCOS is not completely understood yet hyperandrogenism, obesity, insulin resistance, infertility treatment, and placental dysfunction are believed to be the associated causes.
- Women with PCOS are at higher risk of early pregnancy loss, recurrent pregnancy loss, gestational diabetes, hypertensive disorders of pregnancy, preterm delivery, foetal growth restriction.
- Vigilance to screen and identify these complications and institution of appropriate management preferably by experts in the field is necessary for successful outcomes for both the mother and the foetus.
Key Points

• Women with PCOS who desire a pregnancy may be at increased risk for adverse pregnancy outcomes, and this may be exacerbated by obesity and/or insulin resistance (level B).

• Health should be optimized before conception, with advice about smoking cessation, lifestyle, diet, and appropriate vitamin supplementation (e.g., folic acid).

• Several factors contribute to early and recurrent loss of pregnancy in women with PCOS.

• Women with PCOS should be observed closely during pregnancy as they may be at increased risk for the development of gestational diabetes, gestational hypertension, and associated complications (level B).

• Pregnancy-associated risks are greater in women diagnosed by more classic (National Institutes of Health) criteria as opposed to nonhyperandrogenic women (level B).

• Babies born from women with PCOS may have increased morbidity and mortality (level B).

• Metformin may be a safe alternative in women with mild gestational diabetes who failed one week of trial with medical nutrition therapy.

Suggested Readings

PCOS and Pregnancy

POST-TEST

1. Women with PCOS can:
 a. Get pregnant only if they undergo IVF
 b. Get pregnant only if they undergo ovulation induction
 c. Get pregnant spontaneously or with ovulation induction and other assisted reproductive techniques
 d. Never get pregnant

2. The possible complications of pregnancy are:
 a. Gestational diabetes
 b. Hypertensive disorders of pregnancy
 c. Preterm delivery
 d. All of the above
 e. None of the above

3. Which of the following is untrue?
 a. Singleton pregnancies have no complications in women with PCOS
 b. Hyperandrogenism, insulin resistance, obesity may contribute to the pathophysiology of PCOS
 c. Women with PCOS have higher proportion of both SGA and LGA babies
 d. All of the above
 e. None of the above

4. Which of the following is the cause of pregnancy complications
 a. Poor oocyte quality
 b. Poor embryo quality
 c. High oxidative stress
 d. All of the above
 e. None of the above

5. Which of the following has not been associated as a cause of early pregnancy loss in women with PCOS?
 a. Obesity and insulin resistance
 b. Higher plasma levels of androgens
 c. Low levels of glycodelin
 d. Increased levels of luteinizing hormone
6. **GDM in women with PCOS** is more prevalent among:
 a. All women with PCOS
 b. Obese women with PCOS
 c. Hyperandrogenic women with PCOS
 d. b and c
 e. None of the above

7. **Prevalence of hypertensive disorders of pregnancy among pregnant women with PCOS** is:
 a. Half of that seen among the normal population
 b. Thrice of that seen among the normal population
 c. Ten times of that seen among the normal population
 d. Same as that seen among the normal population

8. **Which of the following chronic diseases are hypothesized to have foetal origins?**
 a. Obesity
 b. Hypertension
 c. Coronary artery disease
 d. Osteoporosis
 e. All of the above
 f. None of the above

9. **The following must be assessed in all women with PCOS who are planning to conceive, except:**
 a. BP
 b. Oral glucose tolerance test
 c. Blood glucose
 d. Phenylketonuria screening

10. **In women with PCOS who have experienced a miscarriage, you should check serum homocysteine levels for identification and treatment of hyperhomocystenemia mediated repeated pregnancy losses.**
 a. True
 b. False
For the use of a Registered Medical Practitioner or a Hospital or a Laboratory only.

This initiative is supported by an unrestricted educational grant from

USV Private Limited

B. S. D. Marg, Govandi, Mumbai - 400 088. www.usvindia.com